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Abstract

Many online retail platforms, such as Amazon and JD.com, have recently begun

providing sellers with proprietary consumer data. In this paper, we investigate how

the sharing of such data can incentivize seller collusion through personalized pricing.

We find that the effect of data sharing on collusion sustainability and profitability de-

pends on the mode operated by the platform. When a platform acts as both a host

and seller, sharing data leads to more collusive outcomes. However, when a platform

only intermediates purchases, sharing data hinders collusion. Our results suggest that

imposing a ban on data sharing may be ineffective and harmful to consumer welfare.
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1 Introduction

Online platforms, such as Amazon and JD.com, serve as intermediaries between buyers and

sellers. This “gatekeeper” position allows them to collect large amounts of consumer-level

data through tracking cookies, registration information, loyalty programs, etc. Moreover,

platforms have begun sharing this proprietary consumer data with their sellers. For example,

Amazon shares buyer identification and transaction information with their third-party sellers

(see Choe et al., 2024). JD.com has also created a service that provides third-party sellers

with consumer-level information that includes credit history, location, search history, and

other preferences1. Both such acts assist sellers in offering targeted coupons to buyers or

setting different prices based on consumer characteristics.

The implications of personalized pricing on consumer and seller welfare have been widely

discussed in recent years by both policymakers and researchers. For instance, OECD (2018)

states that personalized pricing “is typically pro-competitive and often enhances consumer

welfare,” but may also be harmful “by potentially enabling the exploitation of consumers

and creating a perception of unfairness.” The ambiguity in results can be somewhat seen

in Rhodes and Zhou (2024). They find that the effect of personalized pricing on consumer

welfare depends on whether full market coverage is satisfied. Although the static effects

of personalized pricing are well understood, the effect that sharing data has on collusive

outcomes has not been heavily explored.

Moreover, an increasing number of decisions are now being supported through machine

learning and algorithms that leverage big data. Indeed, pricing algorithms are being more

widely adopted by sellers and platforms can even provide sellers with simple pricing tools.

Amazon provides a repricing software that is designed to automate pricing for sellers.2 Pre-

vious research has shown that the usage of rule-based pricing strategies on Amazon has

become more prevalent (see Chen et al., 2016, and Wang et al., 2022).

The emergence of such advanced tools has posed two major difficulties to fair competition

on these online marketplaces. First, policymakers have recently expressed concern about how

sharing proprietary consumer data combined with the use of digital pricing tools potentially

contributes price discrimination. For example, the UK’s Competition and Markets Authority

(2018) warns that pricing algorithms “in combination with the growth of ‘Big Data’...might

lead to personalized pricing.” Researchers have also found that algorithms can lead to raising

prices and even learn to autonomously price collude without any prior knowledge of the

market environment. One notable example of price hikes through algorithms is Amazon’s

1Hu et al. (2023) provides a more detailed description of how JD.com shares consumer information.
2See https://aws.amazon.com/marketplace/pp/prodview-lsel7dks2e7uw.
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scrapped “Project Nessie” which resulted in a lawsuit filed by the FTC.3 Also, the German

Monopolies Commission (2018) states that “the increasing use of pricing algorithms makes

collusion-related consumer damages more likely in the future.” In addition, the question of

whether antitrust liability can be established when various decisions are made by humans

versus machines has been widely discussed (see, eg., OECD, 2017). Thus, the introduction

and increasing use of pricing algorithms poses a deep concern for competition regulators due

to its ability to price discriminate and set supra-competitive prices.

One policy remedy to address these issues is the Preventing Algorithmic Collusion Act of

2024 which was introduced by the U.S. Congress that prohibits the use of a pricing algorithm

that incorporates or was trained using proprietary data.4 Although the legislation provides

a first-step solution towards preventing algorithmic collusion, does restricting data supplied

to seller, assuming they are using pricing algorithms, really reduce collusive sustainability?5

How would this depend on the design of the marketplace or the platform’s incentive to share

data?

In this paper, we analyze how sharing data affects sustainability of tacit collusion between

two horizontally differentiated sellers intermediated by a data-rich platform.6 We consider

two different modes operated by the platform. First, we consider a platform that runs

in “marketplace mode” where the platform’s role is providing access between buyers and

sellers. We also consider when the platform runs in “dual mode” where the platform is

fully integrated with a seller. Under dual mode, the platform acts as both host and seller,

e.g. Amazon with their Amazon Basics products. This means the platform sets prices in

competition with the other seller.

We develop an infinitely repeated game where, given the market structure of the platform,

the stage game is as follows. In each time period, the data-rich platform sets an ad-valorem

fee and chooses whether to share its data with sellers. If sellers have access to data, they can

set personalized prices for each consumer instead of a standard uniform price. Observing

their prices, consumers make their purchasing decisions. We assume each strategic player

follows grim-trigger strategies to investigate their incentives for collusion.

3For experimental evidence of algorithmic collusion, see Calvano et al. (2020) and Klein (2021). Note that
there is also some empirical evidence that suggests pricing algorithms may benefit consumers, see Hanspach
et al. (2024).

4See https://www.congress.gov/bill/118th-congress/senate-bill/3686.
5Others have addressed the remedy proposed in the Preventing Algorithmic Collusion Act through dif-

ferent contexts. For example, Harrington Jr (2025) discusses the legislation in a hub (algorithm distributor)
and spoke (firms) context and finds that banning the use of proprietary data for pricing algorithms may be
ineffective or create additional inefficiencies.

6We treat the mode of the platform as exogenous. Practically, platforms may choose which mode to
operate based on the market environment. However, we are primarily focused on potential data sharing
implications instead.
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Our first main result explores collusive outcomes given the platform operates as a market-

place. In this scenario, sellers face no information asymmetry. Under competition, platforms

extract profits from the sellers to the point that they are on the margin of staying in the

marketplace regardless of data sharing policy. Without data, price collusion is less profitable

for sellers. But as sellers must internalize some profit loss on their turf when setting a lower

uniform price, sellers are less incentivized to deviate. That is, collusion is more likely when

under marketplace mode. Collusive profitability, from a platform perspective, depends on

how patient sellers are. Because collusion is less profitable for sellers, platforms must set

lower fees to ensure collusion. Thus, platforms generally prefer sharing data if sellers are

sufficiently patient, vice versa.

If the platform operates under dual mode, sharing data in fact increases collusive sustain-

ability and profitability. Now, the data-rich platform competes with the seller and has an

informational advantage under no data sharing. The same logic applies as before, but with

a reduced effect. That is, even though collusion is less profitable for the seller under no data

sharing versus full data sharing, the seller must set a lower uniform price when deviating and

incur a loss from consumers originally in their turf. However, because the platform has an

advantage under collusion, this loss is greatly reduced in comparison to when the platform

was in marketplace mode. This is the driving force behind the sustainability result. When

both players have access to consumer data, collusive profits are highest and the platform can

enforce a higher fee under collusion. Thus, profitability for the platform is greater with data

sharing. Table 1 summarizes the key findings in the paper.

As consumer welfare is lowest when sellers price collude and have access to data, our

analysis shows that the effects of data sharing on collusive outcomes are not black and white.

From a regulation standpoint, banning the usage of proprietary data for pricing algorithms

may be ineffective. Instead, regulation policies should depend on the structure of the platform

or specific product markets. These results are also robust when considering more flexible

levels of data sharing, privacy concerns form consumers, and harsher punishment strategies

from sellers.

The rest of this paper goes as follows. Section 2 reviews the related literature. Section 3

describes the model of the stage game and dynamic strategy of the players. Sections 4 and 5

analyze collusive outcomes under marketplace mode and dual mode, respectively. Section 6

provides several extensions such as incorporating more flexible levels of data sharing, privacy

concerns from consumers, and harsher punishment strategies from sellers. Section 7 ends

with concluding remarks.
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Collusive Sustainability Collusive Profitability

Marketplace Mode No Data Sharing

No Data Sharing − if
sellers are less patient
Data Sharing − if
sellers are more patient

Dual Mode Data Sharing Data Sharing

Table 1: Platform preference on which mode to operate is based on collusive sustainability
or profitability.

2 Related literature

This paper contributes to the literature on competitive personalized pricing. Our stage

game follows a framework similar to that of Thisse and Vives (1988) which has been widely

adopted to study spatial price discrimination. They find that personalized pricing reduces

firm profits and increases consumer surplus under competition. Other related papers that

use this framework include Shaffer and Zhang (2002) and Montes et al. (2019). Shaffer

and Zhang (2002) studies competition between firms with asymmetric targeting costs for

personalized pricing, whereas Montes et al. (2019) examines how a data intermediary should

distribute data to firms for the purpose of personalized pricing. Anderson et al. (2023) and

Rhodes and Zhou (2024) also focus on competitive personalized pricing by using a general

discrete-choice model. Specifically, Anderson et al. (2023) allows consumers to opt-in to

discounts which is costly to firms, while Rhodes and Zhou (2024) show that the welfare

consequences discussed in Thisse and Vives (1988) can be reversed if the market is not fully

covered.

We also touch on the viability of data sharing among competing sellers. Gradwohl and

Tennenholtz (2023) find that selling only some consumers’ data may lead to win-win out-

comes for competing sellers. Both Hu et al. (2023) and Navarra et al. (2024) model a

dual-role platform that can share data with its seller that it hosts. In particular, Hu et al.

(2023) find that information sharing between the platform and seller should be regulated

based on commission rate. Navarra et al. (2024) show that platforms are always incnetivized

to share data, albeit they consider other data sharing scenarios than just full data sharing.

We instead find that platforms unambiguously benefit by data sharing only under dual mode.

Our analysis mainly differs in that we consider ad-valorem fees as opposed to transaction

fees we are primarily focused on collusive outcomes under such information sharing policies.

At its core, our paper contributes to the literature that examines the interplay between

collusion and price discrimination. Specifically, previous literature has shown that the ef-

fect price discrimination has on collusive behavior is ambiguous. For example, Helfrich and
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Herweg (2016) use a linear city model and finds that a ban on third-degree price discrim-

ination increases collusion sustainability. Döpper and Rasch (2024) similarly shows that a

ban on second-degree price discrimination facilitates collusive outcomes. However, Peiseler

et al. (2022) analyzes a setting where firms can third-degree price discriminate under pri-

vate information. The addition of noisy signals on consumer preferences yields the opposite

outcome. That is, they show that when signals are sufficiently noisy, a ban on third-degree

price discrimination may reduce collusion. To the best of our knowledge, we are the first to

bridge personalized pricing using a Hotelling framework and collusion.

Moreover, we address questions brought up in the fierce debate on algorithmic collusion.

Many seminal works have discussed how pricing algorithms may autonomously collude. For

example, Calvano et al. (2020) and Klein (2021) simulate competing reinforcement-learning

algorithms and find that they can converge to collusive outcomes. In contrast, Miklós-Thal

and Tucker (2019) suggest that better algorithms and demand forecasting potentially leads

to lower prices and higher consumer welfare. Johnson et al. (2023) tackles the question from

a platform design perspective. They show that a platform may enforce steering rules that

can combat algorithmic collusion to the benefit of both consumers and the platform.

3 Description of the model

Consider the following infinitely repeated game that represents a specific product market on

a data-rich platform. We first describe the model when the platform operates in marketplace

mode and further discuss how we adapt the model when platform also operates as a seller

in Section 5.

There are two competing sellers B1 and B2 hosted by the platform. Specifically, sellers

B1 and B2 can produce goods at marginal cost 0 and are positioned at the beginning and

end of a Hotelling (1929) line, respectively (i.e. lB1 = 0 and lB2 = 1). A measure 1 of

consumers are uniformly distributed on the Hotelling line. Consumers have at most one unit

of demand, value both sellers’ good at 1, and have an outside utility of 0. Also, consumers

face a transportation cost τ per unit traveled where 0 < τ < 2/7.7 We interpret τ as the

degree of product differentiation. To summarize, a consumer located at x ∈ [0, 1] purchasing

a good from i ∈ {B1, B2} gains the following utility:

U(x, pi) = 1− pi − τ |li − x|

7The restrictions on τ guarantee there will be full market coverage if a seller prices as a monopolist which
is key in our analysis. Also, this restriction significantly simplifies the analysis for deviating outcomes, but
is not needed for this purpose. We can in fact have τ < 1

2 and still yield the same results.
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where pi is the price set by i.

We assume that the platform is data-rich in the sense that it knows all consumer locations

along the unit interval. Moreover, platform A has the option to share this consumer-level

information with the sellers via its data-sharing policy D ∈ {S,N}. That is, if D = S,

the platform shares data on every consumer with the sellers, allowing sellers to enforce

personalized pricing (i.e. first-degree price discrimination). If D = N , the sellers sets a

uniform price instead. In each period, the platform A posts an ad-valorem fee r ∈ [0, 1] and

its data-sharing policy D. The sellers observe the posted r and D and decide whether to

join the platform before making their pricing decisions.

We require two crucial assumptions in our environment. First, each seller has a reserva-

tion payoff of u where 0 < u < τ
8
. This can be a result of the seller having a direct channel

outside the platform or selling on some competing platform. Without a nonnegative outside

option, we would have trivial results, as the platform will always set r = 1 leaving sellers

with no profits. The other crucial assumption is that the platform always ensures sellers

stay on the platform by setting their fee such that seller profits are weakly greater than u.

Specifically, we prefer to focus on the competitive and collusive outcomes based on different

data-sharing policies without the distraction of our sellers’ choice of entry and exit from the

platform. Of course, there may be many motives for the platform’s preference to keep their

seller. We provide one possible explanation by extending our base model in Appendix B

where all the results presented in Sections 4 and 5 still hold.

The timing of the stage game goes as follows:

1. A chooses (r,D) ∈ [0, 1]× {S,N}.

2. Sellers observe (r,D) and set personalized prices or uniform prices depending on D.

All pricing is done simultaneously.

3. Consumers observe prices, make their purchasing decisions, and outcomes are realized.

3.1 Dynamic Strategy

We assume that all players are long-lived and share a common discount factor δ ∈ (0, 1) per

period. Furthermore, under perfect monitoring, B1 and B2 follow grim trigger strategies a

la Friedman (1971). That is, if any seller deviates from collusive pricing, the other seller

prices according to the (static) Nash equilibrium of the stage game for each subsequent

period. The platform’s objective is to maximize its joint discounted profit. We stick with

sellers following grim-trigger strategies for the following reasons. First, in the context of

Hotelling set ups, there is evidence that optimal punishment strategies tend to be similar to
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grim-trigger strategies (see Häckner (1996) and Liu and Serfes (2007)). Recent studies on

algorithmic collusion have also shown that algorithms can learn sophisticated grim-trigger

strategies to enforce supra-competitive prices. Finally, optimal punishment strategies come

with the trade-off of less tractable models. We will provide more specific details on how we

characterize collusive sustainability in Sections 4 and 5.

4 Equilibrium in the non-integrated case

We first proceed by solving for the Subgame Perfect Nash Equilibrium (SPNE) as well as

collusive and deviation outcomes in the stage game under two benchmark cases: full data

sharing where D = S and no data sharing where D = N . Because sellers are symmetric

and face the same fee, their profits under competition, collusion, and when deviating are the

exact same.

4.1 Full Data Sharing, D = S

Suppose A sets some fee r and there are two sellers on the platform. The competitive pricing

follows exactly from Thisse and Vives (1988). Seller B1 sets price max{τ(1 − 2x), 0} and

seller B2 sets price max{τ(2x− 1), 0} for a consumer located at x. As a result, seller payoffs

can be characterized as

π∗
S(r) = (1− r)

∫ 1
2

0

τ(1− 2x)dx = (1− r)
τ

4
. (1)

By backwards induction, platform A will set r to extract seller profit up to u. Specifically,

A’s optimal ad valorem fee r∗S must satisfy π∗
S(r

∗
S) = u ⇐⇒ r∗S = 1 − 4u

τ
. Thus, under

competition, A gains πA,S = 2π∗
S(r

∗
S)

r∗S
1−r∗S

= τ
2
− 2u and both sellers end with u in profit.

Under data sharing, each seller has full knowledge of consumer locations and tries to win

over consumers on its rival’s side with low prices. This induces sellers to charge low prices

even for consumers who have strongly prefer their product. Naturally, the platform will then

calibrate their fee to extract as much profit as possible.

Under full collusion, sellers can maximize industry profits by splitting the market and

setting their price to each consumer’s willingness to pay. This occurs with the following price

schedule

pcS(x) =

1− τx if x ≤ 1
2

1− (1− x)τ if x ≥ 1
2

. (2)
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That is, each seller would achieve a collusive profit of

πc
S(r) = (1− r)

∫ 1
2

0

(1− τx)dx = (1− r)(
1

2
− τ

8
). (3)

Now given that a seller sets pcS(x), the opposing seller’s optimal deviating strategy would be

to undercut pcS(x) for all consumers. B1’s deviating price would then be 1 − τx and B2’s

deviating price would then be 1− τ(1− x) for consumer located at x. Thus, deviating profit

under full data sharing is

πd
S(r) = (1− r)

∫ 1

0

(1− τx)dx = (1− r)(1− τ

2
). (4)

4.2 No Data Sharing, D = N

Again, suppose A sets some fee r. Similarly to the full data sharing scenario, the competitive

payoffs follow closely from Thisse and Vives (1988) where each seller sets uniform price τ

and obtains

π∗
N(r) = (1− r)

τ

2
. (5)

Using the same logic from before, A’s optimal fee r∗N is such that π∗
N(r

∗
N) = u ⇐⇒ r∗N =

1 − 2u
τ
. Thus, A will attain πA,N = 2π∗

N(r
∗
N)

r∗N
1−r∗N

= τ − 2u and both sellers are left with u

profit. Here, we get the Thisse and Vives (1988) result where personalized pricing benefits

every consumer. But, this also implies that the platform prefers to restrict data sharing in

competition as their fee is dependent on seller pricing, i.e. r∗N > r∗S.

Because sellers are constrained to setting uniform prices, both sellers will set pcN = 1− τ
2

under full collusion. Like Full Data Sharing, sellers will split the market and each consumer

purchases from the seller that is closer to them. However, as the sellers have no knowledge

of individual locations, they cannot fully extract the consumer surplus. If a seller deviates,

they would set their uniform price at pdN = 1− 3τ
2
to capture the entire market.8 Thus, the

collusive and deviating profits under no data sharing can be characterized as follows:

πc
N(r) = (1− r)(

1

2
− τ

4
), (6)

πd
N(r) = (1− r)(1− 3τ

2
). (7)

8This is not necessarily optimal if 2
7 ≤ τ < 1

2 . In such a case, the seller would only undercut and gain a
portion of the market. Fortunately, this does not change our main results and our insights remain consistent.

8



Figure 1: A graphical comparison of the price schedules based on different pricing policies
under marketplace mode. Solid lines represent collusive prices, dashed lines represent devi-
ating prices, and dotted lines represent competitive prices.

4.3 Comparison of Full Data Sharing vs. No Data Sharing

Given the dynamic environment presented, we say that collusion is sustainable under policy

D ∈ {S,N} as an SPNE if and only if
πc
D(r)

1−δ
≥ πd

D(r) +
δ

1−δ
π∗
D(r

∗
D) and 2πc

D(r)
r

1−r
≥ πA,D

where r is the ad valorem fee set under collusive pricing for policy D. This means δ must

satisfy

δ ≥ δmkt
D (r) ≡ πd

D(r)− πc
D(r)

πd
D(r)− π∗

D(r
∗
D)

for D ∈ {S,N}.

Here, δmkt
D (r) represents the critical discount factor under benchmark policy D and measures

collusive sustainability. A higher δmkt
D (r) implies that the set of discount factors that can

support collusion is smaller. Now, we are ready to compare our two data sharing policies to

determine which is more sustainable for collusive pricing.

Lemma 1 Given δ ≥ δ̂mkt
D , the platform’s optimal ad valorem fee to sustain collusion under

marketplace mode is:

rmkt
D (δ) =

1− δu
δ(1− τ

2
)− 1

2
+ 3τ

8

if D = S

1− δu
δ(1− 3τ

2
)− 1

2
+ 5τ

4

if D = N

where δ̂mkt
S =

1
2
− 3τ

8

1− τ
2
−u

and δ̂mkt
N =

1
2
− 5τ

4

1− 3τ
2
−u

. Otherwise, rmkt
D (δ) = 0.

Lemma 1 characterizes the fee set by A to ensure collusion can be realistically sustained.

The reason we preface that the δ be sufficiently large is that for low δ, collusion cannot be

sustained. In such a case, we simply just set the optimal fee to 0. The specific thresholds

for δ in Lemma 1 is derived by restricting r between 0 and 1. The properties of the fee are
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quite intuitive. Regardless of data sharing policy, the optimal fee is weakly increasing in δ

and decreasing in u. If sellers are more patient or have lower outside options, the platform

can extract more seller profit by setting a higher fee under collusion. One last immediate

observation is that for less patient sellers, rmkt
N ≥ rmkt

S and vice versa.

Proposition 1 Under marketplace mode, collusion is more sustainable with no data sharing

than with full data sharing.

When the platform operates under marketplace mode, sellers are more willing to collude

with no data sharing. Because the platform always extracts profits from the seller until

they are at u profit in competition, collusion sustainability is essentially dependent on the

magnitude of deviating profits compared to collusive profits. Although the collusive profits

increase with data sharing as sellers can set personalized prices for each consumer, the devi-

ating profits increase even more as each seller can capture the entire market by setting price

to every consumers’ willingness-to-pay. Instead, if a seller deviates under no data sharing,

they must also lower prices for consumers they would have won under collusion. Thus, de-

viating is less lucrative under uniform pricing. So far, our analysis has only considered how

collusive outcomes given some exogenous data sharing policy. But how will endogenizing the

benchmark policies affect A’s decision?

Corollary 1 Under our benchmark cases, the following summarizes A’s choice of data shar-

ing in marketplace mode:

• If δ < δN , A does not share data and there will be no collusion;

• If δN ≤ δ < δS, A does not share data and there will be collusion;

• If δS ≤ δ, A shares data and there will be collusion

where δN is such that rmkt
N (δN) =

τ−2u
1− τ

2
and δS is such that

rmkt
S (δS)

rmkt
N (δS)

= 4−2τ
4−τ

.

As mentioned earlier, the platform prefers not to share data in a competitive market. Ac-

counting for this fact, our results from Proposition 1 still do not change. Indeed, collusion

is more sustainable with no data sharing even when endogenizing our extreme data sharing

policies. In a cartelized market, the platform will share data if sellers are patient enough.

Recall from the discussion of Lemma 1 that the fee with data sharing exceeds that without

data sharing. Coupled with the fact that given the same fee collusive profits are higher under

no data sharing for sellers (i.e. πc
S(r) > πc

N(r)), as δ increases the platform will eventually

prefer sharing data.
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5 Equilibrium in the integrated case

In this section, we alter the market structure of the platform in the stage game. Platform

A is now fully integrated with seller B1, i.e. A now operates in dual mode. To simplify

notation, we now denote seller B2 as just B. Throughout this section, we refer to A as both

a “platform” and “seller”. The timing and all other assumptions of the game remain the

same. Given that the sellers (A and B) are not symmetric as opposed to in Section 4, players

will now follow different critical discount factors. We discuss how this slightly changes the

analysis in Section 5.3.

5.1 Full Data Sharing, D = S

If A shares all the data with B, both players can set personalized prices for all consumers.

First, observe that since A and B compete for consumers through localized Bertrand compe-

tition, competing price offers are driven down to marginal cost. In equilibrium, A is willing

to decrease prices up to its effective marginal cost rpB(x) and a consumer located at x ∈ [0, 1]

is indifferent between A and B iff

1− rpB(x)− τx = 1− (1− x)τ − pB(x).

Rearranging terms and accounting for the fact that pB(x) ≤ 1− (1− x)τ , the optimal price

B sets in equilibrium is

p∗B,S(x, r) =


0 if x < 1

2

(2x−1)τ
1−r

if 1
2
≤ x < xd(r)

1− (1− x)τ otherwise

(8)

where

xd(r) ≡ min{1− r(1− τ)

τ(1 + r)
, 1}. (9)

Note that B sets price down to 0 for consumers who prefer A’s product. This follows the

conventional logic of Bertrand competition as marginal cost is 0. However, for consumers

who prefer B’s product, A and B will price compete until the price is lowered such that A is

willing to forgo the demand. Indeed, at a sufficiently low price, A’s gain from pricing lower is

lower than the gain from just letting B win the consumer and obtaining a proportion of the

profit. xd(r) represents the point in which B is starting to get price capped at 1− (1− x)τ.

One important thing to note is that xd(r) → 1
2
as r → 1 and xd(r) → 1 as r → 0. This is

quite intuitive as if r goes to 1, A will never price compete for the consumer (that prefers
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B’s product) if pB(x) = 1 − (1 − x)τ. Similarly, if r goes to 0, the environment is just like

that of Thisse and Vives (1988). Without r, we can just interpret A as a competing seller,

instead of a dual-role platform.

Now, consider the consumers who prefer A’s good. Because B is willing to price at 0, A

will set prices such that a consumer is indifferent between A and B. This occurs iff

1− pA(x)− τx = 1− (1− x)τ.

Thus, the optimal price A sets in equilibrium is

p∗A,S(x, r) =

(1− 2x)τ if x < 1
2

rp∗B,S(x, r) otherwise
. (10)

This yields the following competitive payoffs for A and B:

π∗
A,S(r) =

∫ 1
2

0

(1− 2x)τdx+
r

1− r
π∗
B,S(r)

π∗
B,S(r) =

∫ xd(r)

1
2

(2x− 1)τdx+ (1− r)

∫ 1

xd(r)

(1− (1− x)τ)dx.

Lemma 2 The three following properties hold: (i)
dπ∗

A,S(r)

dr
> 0; (ii)

dπ∗
B,S(r)

dr
≤ 0; (iii) π∗

B,S(r)

is weakly concave in r.

Let R∗
S denote the largest ad valorem fee such that π∗

B,S(R
∗
S) = u. Lemma 2 implies that

R∗
S is the profit-maximizing fee for A as A’s equilibrium profit is increasing in r and B’s

equilibrium profit is weakly decreasing in r.

Under full collusion, A and B maximize joint profits in the market. A and B achieve

this by only attracting consumers who prefer their product by setting their price schedule

to that of (2) and obtaining the collusive payoffs

πc
A,S(r) = (1 + r)(

1

2
− τ

8
), (11)

πc
B,S(r) = (1− r)(

1

2
− τ

8
). (12)

Given the collusive price schedules, B’s deviating strategy would be to undercut A’s price

for all consumers. A’s deviating price would be the same, but only when the undercut price

12



is greater than rpcS(x). To summarize, A and B’s deviating prices are

pdA,S(x, r) =

1− τx if x ≤ xd(r)

1− τxd(r) otherwise
and pdB,S(x) = 1− τ(1− x).

Deviating profits under full data sharing would then be

πd
A,S(r) =

∫ xd(r)

0

(1− τx)dx+ r

∫ 1

xd(r)

(1− τ(1− x))dx, (13)

πd
B,S(r) = (1− r)

∫ 1

0

(1− τ(1− x))dx = (1− r)(1− τ

2
). (14)

Notice that collusive profits and deviating profits for B are exactly that from the non-

integrated case in Section 4.1.

5.2 No Data Sharing, D = N

If A is not allowed to share any data with B, seller B sets a uniform price for all consumers

and only A can set personalized prices. To understand how we can arrive at a pure strategy

equilibrium, consider our environment but without the two crucial assumptions: (i) the

seller has an outside option of u > 0 and (ii) the platform prefers to keep the seller on

the platform over selling on its own. This is akin to standard environments presented in

the relevant literature. As previously mentioned, A and B compete for consumers through

localized Bertrand competition. Thus, given some price pB set by B, A’s optimal strategy is

to set pA(x) ≥ rpB such that consumers are indifferent between pA(x) and pB. Specifically,

A’s optimal price schedule would be

p̃∗A(x, pB, r) =

(1− 2x)τ + pB if x ≤ x̃(r, pB) ≡ min{1
2
+ (1−r)pB

2τ
, 1}

1− τx otherwise
. (15)

However, B has an incentive to deviate to pB − ϵ for some small ϵ and capture (pB − ϵ)x̃ in

profit. This process will constantly continue until pB is driven down to 0, but then B now

has an incentive to increase prices above 0 as A is giving up half the market.

Lemma 3 There exists a pure strategy equilibrium when D = N . The equilibrium ad val-

orem fee and prices for A and B are characterized as follows:

R∗
N = 1− u

1− τ
, p∗A,N(x) = 1− τx, p∗B,N = 1− τ.

13



The logic of Lemma 3 goes as follows. When products are sufficiently similar, i.e. τ < 1
2
, B

is always willing to lower prices to attract the entire market demand. At a certain point, A is

no longer willing to price compete and lets B have the market. However, A will recalibrate

its ad valorem fee such that B’s profit will be exactly u. In other words, B prices like a

monopolist and A will extract profits up to the point that B still stays on the platform.

With the added assumption, A is no longer willing to undercut B. Indeed, if A prefers

to keep A on the platform and B has some positive outside option, there is an effective

“stopping point” at which A gives up price competing. It is easy to see that A will set the

highest r such that π∗
B,N(r) = u. More specifically, A will set R∗

N = 1 − u
1−τ

which gives us

π∗
A,N(R

∗
N) = 1− τ −u and π∗

B,N(R
∗
N) = u. Lemma 3 also implies that the equilibrium profits

for A and B, respectively, are

π∗
A,N(r) = r(1− τ) and π∗

B,N(r) = (1− r)(1− τ).

Lemma 4 Under no data sharing, collusive prices are as follows:

pcA,N(x) = 1− τx and pcB,N = 1− τ

3
.

Consequently, the deviating prices are:

pdA,N(x, r) =

1 + 2τ
3
− 2τx if 2

3
< x ≤ xd

N(r) ≡ min{1−r
2τ

+ 2+r
6
, 1}

1− τx otherwise
and pdB,N = p∗B,N = 1− τ

where A only has an incentive to deviate if and only if r < 3−2τ
3−τ

.

Under full collusion, A and B maximize industry profits just like before. Because B is

restricted to setting a uniform price, B cannot fully extract consumer surplus on their end,

so A is incentivized to attract more consumers under no data sharing. However, at some

point, consumers are too far to reach for A, so they prefer to let those consumers purchase

from B and extract profits through their ad valorem fee. Indeed, decreasing the amount

of information B has access to means that the market is less efficient in terms of assessing

consumers’ willingness-to-pay. Lemma 4 implies that the collusive payoffs for A and B are:

πc
A,N(r) =

2

3
− 2τ

9
+ r(

1

3
− τ

9
), (16)

πc
B,N(r) = (1− r)(

1

3
− τ

9
). (17)

Naturally, B’s deviating price is to just set its price as if it was a monopolist under full

14



Figure 2: A graphical comparison of the price schedules based on different pricing policies
under dual mode. Solid lines represent collusive prices, dashed lines represent deviating
prices, and dotted lines represent competitive prices. Red lines represent the seller and blue
lines represent the platform.

market coverage, i.e. τ < 1
2
. A only has an incentive to deviate from the collusive outcome if

the ad valorem fee is sufficiently low such that there is room to undercut B’s uniform price.

From Lemma 2, A and B’s deviation payoffs are

πd
A,N(r) =

πc
A,N(r) if r ≥ 3−2τ

3−τ

2
3
− 2τ

9
+
∫ xd

N (r)
2
3

(1 + 2τ
3
− 2τx)dx+ r(1− τ

3
)(1− xd

N(r)) otherwise
, (18)

πd
B,N(r) = π∗

B,N(r) = (1− r)(1− τ). (19)

Notice that even though πd
B,N(r) = π∗

B,N(r), the profits will end up being different. As will

be discussed later, the collusive ad valorem fee will be lower than that of the static Nash fee.

5.3 Comparison of Full Data Sharing vs. No Data Sharing

We say collusion is sustainable for player j ∈ {A,B} under policy D ∈ {S,N} as an SPNE

if and only if
πc
j,D(r)

1−δ
≥ πd

j,D(r)+
δ

1−δ
π∗
j,D(r

∗
D) where r is the ad valorem fee set under collusive

pricing for policy D. Let δj,D(r) be the critical discount factor for player j ∈ {A,B} under

policy D ∈ {S,N} where

δdualj,D (r) ≡
πd
j,D(r)− πc

j,D(r)

πd
j,D(r)− π∗

j,D(R
∗
D)

. (20)

Naturally, collusion is sustainable under policy k if it is sustainable for both players. In other

words, δ must satisfy

δ ≥ δdualD (r) ≡ max
j∈{A,B}

δdualD (r) for D ∈ {S,N}. (CR)
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Like in the non-integrated case, δdualD (r) follows the same interpretation as a measure for

collusive sustainability.

We first characterize the platform’s maximization problem to ensure collusion is sustained

given δ and D ∈ {S,N} :

max
r

πc
A,D(r) s.t. (∗)



πc
A,D(r) ≥ π∗

A,D(r) (IRA)

πc
B,D(r) ≥ u (IRB)

δ ≥ δdualA,D (r) (CRA)

δ ≥ δdualB,D (r) (CRB)

.

The CRA and CRB constraints are merely derived from condition (CR). Because πc
A,D(r) is

increasing in r, we just need to find the highest r such that (∗) is satisfied. Solving for both

policies gives us the following Lemma.

Lemma 5 Given δ ≥ δ̂dualD , the platform’s optimal ad valorem fee to sustain collusion under

dual mode is:

rdualD (δ) =

1− δu
(1− τ

2
)δ+ 3τ

8
− 1

2

if D = S

1− δu
(1−τ)δ+ 8τ

9
− 2

3

if D = N
(21)

where δ̂dualS =
1
2
− 3τ

8

1− τ
2
−u

and δ̂dualN =
2
3
− 8τ

9

1−τ−u
. Otherwise, rdualD (δ) = 0.

Lemma 5 gives us A’s optimal fee to ensure collusion can be sustained under dual mode.

Observe that rdualS (δ) = rmkt
S (δ) as B’s collusive, deviating, and competitive payoff functions

are the exact same under marketplace mode. Under no data sharing, we instead find that

rdualN (δ) ≤ rmkt
N (δ). The increase in fee under dual mode comes from the information asym-

metry between A and B. Under dual mode, A captures more of the market demand leaving

B with less profit when colluding. Because B’s competitive payoff remains at u regardless

of mode and B’s collusive payoff is greatly reduced (compared to its deviating payoff), B is

less incentivized to collude now. A must then reduce its collusive ad valorem fee to ensure

B cooperates.

Proposition 2 Under dual mode, collusion is more sustainable with full data sharing than

with no data sharing.

The result in Proposition 2 is primarily driven by the seller B’s incentives for collusion.

Because B’s off-path payoff of u remains the same regardless of data sharing, we can focus

our attention to the collusive and deviating payoffs for both policies. As discussed in Lemma

5, the seller’s critical discount factor given r is the exact same under data sharing regardless
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of mode. Now, recall that when the platform operated under marketplace mode with no data

sharing, sellers had to internalize some profit loss from consumers on their turf to deviate

from collusive pricing and capture the entire market. This same effect remains under dual

mode, but is severely diminished as A now captures more of the market demand when fully

colluding due to its informational advantage. Additionally, due to a decrease in collusive

profit for the seller, the platform must now enforce a lower ad valorem fee to facilitate

collusion. This reduction in fee also makes collusion less profitable for the platform.

Also, note that we know from the proof of Proposition 2 that A’s fee in competition

is lower under data sharing, i.e. R∗
S < R∗

N . This is due to A’s willingness to give up the

market under no data sharing and instead set a higher fee to extract seller rent. In fact,

A’s competitive profit is lower under data sharing. Therefore, sharing data also intensifies

off-path competition which leads to a lower ad-valorem fee and profit under competition for

A making collusion more lucrative.9

Corollary 2 Suppose δ is sufficiently large such that collusion can be sustained for both

players and A operates under dual mode. Then, collusion with full data sharing is more

(less) profitable for A (B) than with no data sharing.

Corollary 2 highlights an important point about sharing data under dual mode. The platform

faces no draw backs as long as δ is sufficiently high. In contrast to marketplace mode where

one policy might be more advantageous for collusion sustainability while the other may lead

to higher collusive profits, collusion is both more sustainable and profitable under dual mode.

6 Extensions

6.1 Flexible Data Sharing

In this section, the platform can share data for any set of consumers with both sellers under

marketplace mode. To be specific, A shares (r,D) ∈ [0, 1]× 2[0,1] in period one of the stage

game. In period two, sellers set personalized prices for x ∈ D and uniform prices for x ̸∈ D
where all pricing is still simultaneous. The rest of the stage game remains the same. Many

of the insights introduced in the benchmark cases still hold, but this increase in flexibility

makes the problem far more complex. As such, we will focus on how the platform can

maximize collusive sustainability for individual sellers.

9Although for larger τ this does not hold, the aforementioned effect for the seller always holds and is the
primary reason Proposition 2 holds.
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Proposition 3 In a competitive market, the platform will set D = ∅ when operating under

marketplace mode. In other words, the platform will not share any data with the sellers, even

under flexible data sharing.

Our result in Section 4 that competitive payoffs are higher for the platform without data

sharing remains robust with the extra flexibility in sharing. Intuitively, sellers compete more

fiercely for consumers they have data on. However, note that it may be possible that sharing

certain subsets of consumers may inflate uniform prices from each seller. For example, if the

platform sets D = [1
4
, 3
4
], each seller will set their uniform price to 3τ

2
which is greater than

when D = ∅. We show that such an increase in profits from uniform pricing is overshadowed

by the loss in profits from personalized pricing under any scenario where D is of positive

measure.

Proposition 4 In marketplace mode, collusion is most sustainable for sellers when D = ∅.

Similarly to before, restricting data from sellers maximizes collusive sustainability. Reducing

sellers’ critical discount factors involves finding what D makes deviating profits closest to

collusive profits. Notice that in our benchmark cases, sellers’ deviating prices were higher

with data sharing implying that deviating gains are lower with no data sharing. This does

not necessarily hold with more flexible sharing as the platform can share along the middle of

the Hotelling line to reduce seller incentives to undercut with their uniform prices. However

such a method to reduce deviating gains is met with even less deviating losses. Thus, the

platform is just better off not sharing any data which would maximize deviating losses.

Proposition 5 In dual mode, collusion is most sustainable for the non-integrated seller B

when D = [1
2
, 2
3
]. In contrast, collusion is most sustainable for the platform A when D = ∅.

Under dual mode, the platform’s optimal data sharing policy to facilitate collusion is less

obvious. Without data sharing, the non-integrated seller only wins over consumers who

strongly prefer their product under collusion, i.e. x ∈ [2
3
, 1]. Therefore, to reduce deviating

incentives it is best to “even the odds” by sharing data from [1
2
, 2
3
] to increase B’s collusive

yield. Just like in Proposition 4, if A wants to prevent B from setting a lower deviating

uniform price, then A would need to share a sufficient amount of data along [0, 1
2
]. However,

this would backfire and subsequently increase B’s deviating price. The platform is then best

off just sharing D = [1
2
, 2
3
] to minimize B’s critical discount factor.

As for the platform itself, not sharing any data is optimal for minimizing its own critical

discount factor. Under such a scenario, the platform wins over 2
3
of the consumers when

colluding. Sharing any data in [0, 1
2
] has no effect as the platform always has an information

advantage and sets personalized prices for consumers on their half. In addition, sharing any
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data from [1
2
, 2
3
] only increases potential deviating gains. Finally, consider these last band

of consumers from [2
3
, 1]. Note that A only deviates until xd(r) with data sharing and until

xd
N(r) without data sharing. We find that xd(r) > xd

N(r) given that both these cutoffs are

greater than 2
3
. Thus, not sharing data for these consumers is optimal for the platform.

In conjunction, these conflicting results indicate that the optimal data sharing policy for

collusive sustainability is a subset of [1
2
, 2
3
] depending on the values of our primitives. Indeed,

restricting data may now be suboptimal for the platform to maximize collusive likelihood.

6.2 Privacy costs to consumers

Many recent data regulation efforts are primarily motivated by privacy concerns. For exam-

ple, there has been a widely discussed debate on why consumers willingly provide websites

with their personal information given their publicly expressed support for privacy (see Choi

et al., 2019). To include a privacy concern for all consumers, we extend our model in the

following way. If the platform shares data on the consumer x ∈ [0, 1] with its sellers, then

that consumer faces an additional “privacy” cost c > 0.

Suppose a platform operates in marketplace mode. This means that if the platform

does not share data, consumers will have no concerns regarding privacy. The corresponding

competitive, collusive, and deviating profits will follow exactly that of (5), (6), and (7). If

the platform chooses D = S, and assuming c is sufficiently small, the collusive and deviating

prices for each seller will decrease by c. However, this change will not have enough bite to

drastically affect the key insights highlighted in Section 4.3.

Instead, suppose a platform operates in dual mode. As the platform now acts as a seller

and utilizes its data advantage, each consumer will face privacy cost c regardless of data

sharing policy. We will abstract away from the competitive payoffs of the platform under

D which we will denote as UD. This is because the competitive payoffs of the platform will

not be very relevant in our proofs, but it is important to note that the payoffs will now be

lower than before where there was no privacy cost, i.e., US < π∗
A,S(R

∗
S) and UN < π∗

A,N(R
∗
N).

With the added privacy cost, the non-integrated seller’s collusive and deviating prices and

the platform’s collusive prices will lower by c. This means that under data sharing, both

players will still split the market evenly, and without data sharing, the platform will still win

over 2/3 of the consumers. However, the platform’s deviating price not only decreases by c,

but the set of consumers that the platform will capture when deviating also decreases. For

example, when D = S, both players will set their collusive price to pcS(x)− c from (2). For
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x ∈ [1
2
, 1], the platform will deviate iff

1− τx− c ≥ r(pcS(x)− c) ⇐⇒ x ≥ rτ + (1− r)(1− c)

τ(1 + r)
.

Thus, let

x̃d(r, c) ≡ min
{rτ + (1− r)(1− c)

τ(1 + r)
, 1
}

(22)

be the furthest consumer from A such that A will undercut B when deviating. It is immediate

that x̃d(r, c) ≤ xd(r) from (9). We can similarly define

xd
N(r, c) ≡ min

{(1− r)(1− c)

2τ
+

2 + r

6
, 1
}

(23)

as the furthest consumer that the platform captures when deviating. This implies that the

platform’s deviating profit given D is

πd
A,S(r, c) =

∫ x̃d(r,c)

0

(1− τx− c)dx+ r

∫ 1

x̃d(r,c)

(1− τ(1− x)− c)dx, (24)

πd
A,N(r, c) =


πc
A,N(r)− c2+r

3
if x̃d

N(r, c) ≥ 2
3

πc
A,N(r)− 2c

3
+
∫ x̃d

N (r,c)
2
3

(1 + 2τ
3
− 2τx− c)dx otherwise

+r(1− τ
3
)(1− x̃d

N(r, c)− c)

. (25)

Proposition 6 If consumers face a sufficiently low privacy cost c > 0, then the results in

Propositions 1 and 2 still hold. That is, collusion is more (less) sustainable with no data

sharing under marketplace (dual) mode.

Proposition 6 provides a straightforward robustness result, but may have an important pol-

icy implication. Taking the contrapositive, if one were able to observe similar markets (aside

from privacy costs) and find contradicting collusive outcomes, then privacy concerns from

the platform may be a potential explanation. That is, consumers face varying privacy costs

depending on separate markets which may be induced by factors such as platform data

collection efforts and privacy transparency. Thus, if a given market is experiencing supra-

competitive pricing and the other competitive pricing, then one plausible method to reduce

collusive sustainability is to adjust the more collusive market’s environment regarding per-

sonal information to be similar to the other.
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6.3 Harshest Punishment

In this section, we briefly discuss why our previously established results remain robust if

sellers use the harshest possible punishment strategy. The intuition is straightforward when

the platform is in marketplace mode. Sellers can enforce the harshest punishment by setting

their price to 0 and, regardless of data sharing policy, the platform will extract the other

seller’s profits to u. Therefore, the critical discount factors we characterize in Section 4.3

remain the same even with the harshest punishment strategies. Of course, we require that

sellers must set nonnegative prices for this to hold. One immediate concern may be that

our assumption that the platform is always motivated to ensure sellers have at least u profit

is too restrictive. Even if we model the seller’s entry decision on the platform, under the

harshest punishment, both sellers would be left with u payoff, as the platform is incentivized

to keep at least one seller (and fully extract down to u profit). If the other seller leaves, then

their profit will be their outside option u, so the critical discount factors in Section 4.3 are

unaffected.

Proposition 7 If sellers enforce the harshest punishment, the result in Proposition 2 still

holds. That is, collusion is less sustainable with no data sharing under dual mode.

When the platform integrates with one of the sellers, the same intuition holds if the non-

integrated seller deviates. Indeed, the platform already enacts the harshest punishment in

competition given that the seller stays. Again, if we decided to include seller entry, then the

platform could try to punish the seller by setting r high enough such that the seller does not

join. But, this would still leave the seller with u payoff from its outside option. If instead

the platform deviates, then the seller would price at 0 to minimize the platform’s payoffs.

Under any data sharing policy D, the platform would be left with τ
4
profits. This change in

off-path payoffs does not drastically change the analysis and results and the same intuition

discussed in Section 5.3 holds.

7 Concluding remarks

In this paper we analyzed the intersection of several emerging concerns for online platforms:

increased sharing of private consumer information to sellers and the growing use of pricing

algorithms which may lead to autonomous algorithmic collusion. We use a stylized model of

seller competition in a repeated game to analyze this problem. We conclude that collusion is

more likely and profitable for the platform when sharing data under dual mode. In contrast,

collusion is less likely and platform profits are ambiguous when sellers have access to data

in a standard marketplace.
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Therefore, the key message that arises from our results is that a blanket ban on sharing

data can potentially be ineffective for consumers. Instead, one must assess the relationship

between data sharing policy and platform structure on collusive outcomes. Naturally, this

type of policy remedy requires a case-by-case analysis as opposed to a simple ban on data

sharing to be effective.

The environment we examined is special. That is, our attention is restricted to two

sellers and a market where total sales remain constant. Of course, many of the results rely

on our critical assumptions in the stage game. However, these assumptions are required to

keep pricing simultaneous. Otherwise, we cannot properly differentiate whether results are

caused by a change in data sharing policy or timing structure. We conjecture that this is the

primary reason why research bridging personalized pricing and collusion is less developed.

Thus, our paper faces the trade-off in being more stylized and providing a reliable take on

data sharing on collusive outcomes.

Our model can still be extended in many ways. First, we do not simulate our environment

using pricing algorithms. Using Q-learning algorithms similar to Calvano et al. (2020) and

Johnson et al. (2023), among others, is counterintuitive by nature as Q-learning algorithms

have no knowledge of the economic environment and adapt by experimentation. We leave the

task of simulating personalized pricing through reinforcement learning for future research.

Also, platforms share data with all sellers in our model. One could allow platforms to choose

different data sharing decisions for each seller when operating in marketplace mode and

analyze how it affects collusive outcomes. This comes with the caveat that there will not

be a pure strategy equilibrium in the stage game, so additional assumptions would have to

be imposed to guarantee a tractable and reliable model. Lastly, we assume that each set of

consumers is unique in each time period. A possible extension could be to consider returning

consumers in which sellers can learn about consumer locations along the Hotelling line.
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A Proofs.

Proof of Lemma 1.

Let r̂D denote the highest r such that πc
D(r) = u. Using the analysis in Section 4.1 and Section

4.2, we know

δmkt
S (r) =

(1− r)(12 − 3τ
8 )

(1− r)(1− τ
2 )− u

and δmkt
N (r) =

(1− r)(12 − 5τ
4 )

(1− r)(1− 3τ
2 )− u

.

It can be easily verified that δmkt
D (r) is strictly increasing in r for r < r̂D within our parameter

restrictions. For collusion to be sustainable under D ∈ {S,N}, it must be that δ ≥ δmkt
D (r). As A’s

profit is strictly increasing in r, A’s optimal ad valorem fee to sustain collusion is to set r such that

δ = δmkt
D (r). If the derived fee is greater than 1 or less than 0 (i.e. collusion is not sustainable), we

just restrict the fee to 0 which gives the presented result.

Proof of Proposition 1.

For collusion to be sustainable under N , it must be that δ ≥ δmkt
N (r) and 2 r

1−rπ
c
N (r) ≥ τ − 2u.

This occurs for

τ − 2u

1− τ
2

≤ r ≤ rmkt
N (δ).

Note that the rmkt
N (δ) is increasing in δ under our parameter restrictions, so the lowest δ such

that collusion is sustainable is when the rmkt
N (δ) = τ−2u

1− τ
2
. Solving this gives the lowest δ such that

collusion is sustainable under no data sharing as

δN =
2τ − 0.5− u− 15

8 τ
2 + 5τu

2

u(5τ2 − 1)− (1− 3τ
2 )

2
< δmkt

S (0) (A1)

where δmkt
S (0) is a lower bound on how sustainable collusion is under full data sharing.

Proof of Corollary 1.

First, observe that the competitive payoff of A is higher under no data sharing. Therefore, the first

item follows the proof of Proposition 1. The collusive profit for A is higher under S than N iff

2rmkt
S (δ)(

1

2
− τ

8
) > 2rmkt

N (δ)(
1

2
− τ

4
) ⇐⇒

rmkt
S (δ)

rmkt
N (δ)

>
4− 2τ

4− τ
. (A2)

Note that for δN < δ ≤
1
2
− 3τ

8
1− τ

2
−u = δ̂mkt

S from Lemma 1, rmkt
S (δ) = 0, so (A2) cannot be satisfied,

where δN is derived in the proof of Proposition 1. It can be easily verified that for δ >
1
2
− 3τ

8
1− τ

2
−u ,
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rmkt
S (δ)

rmkt
N (δ)

is strictly increasing in δ and as δ → 1,
rmkt
S (δ)

rmkt
N (δ)

> 1 > 4−2τ
4−τ . Thus, there must exist some δS

such that for all δ > δS , (A2) is satisfied which gives us items 2 and 3.

Proof of Lemma 2.

Observe that if r < 1− τ, π∗
B,S(r) =

τ
4 . Otherwise,

π∗
B,S(r) =

∫ xd(r)

1
2

(2x− 1)τdx+ (1− r)

∫ 1

xd(r)
(1− (1− x)τ)dx

=τ [(xd(r))2 +
1

4
− xd(r)] + (1− r)(1− τ)(1− xd(r)) + (1− r)τ(

1

2
− (xd(r))2

2
)

=τ [
(xd(r))2

2
− 1

4
] + (1− xd(r))(1− r) +

rτ

2
(1− xd(r))2

=
(1− r + rτ)2

2τ(1 + r)
+ (1− r)

τ + r − 1

τ(1 + r)
+ r

τ + 2r − 2− rτ

2(1 + r)
− τ

4
<

τ

4
.

It can be then shown that

dπ∗
B,S(r)

dr
=

0 if r < 1− τ

3−4τ−2r+τ2−r2

2τ(1+r)2
otherwise

≤ 0

which gives us item (ii). For r < 1− τ, the proof of (i) is trivial. Solving for (i) when r ≥ 1− τ , we

have

dπ∗
A,S(r)

dr
=

π∗
B,S(r)

1− r
+

rπ∗
B,S(r)

(1− r)2
+

rπ∗′
B,S(r)

1− r
> 0 ⇐⇒

π∗
B,S(r)

1− r
+ rπ∗′

B,S(r) > 0

⇐⇒ (1− r)(4r − (1 + r)(1 + r2) + 2τ(1− r)︸ ︷︷ ︸
≡z(r)

) + 2τ2r > 0.

Note that a sufficient condition for the statement to hold is to show that z(r) > 0 which can be

easily verified. When r ≥ 1− τ,

d2π∗
B,S(r)

dr2
=

−4 + 4τ − τ2

τ(1 + r)3
< 0.

Therefore, π∗
B,S(r) is weakly concave and (iii) holds.

Proof of Lemma 3.

Consider B’s optimal price when selling by itself (as a monopolist). A consumer purchases from B

iff

1− (1− x)τ − pB ≥ 0 ⇐⇒ x ≥ 1− 1− pB
τ

.
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Thus, B’s profit maximization problem is maxpB{pB min{1, 1−pB
τ }}. This is a standard monopoly

problem which yields the optimal price p∗B = 1− τ.

Suppose A sets r. We first derive A’s optimal price schedule p̃∗A(x, pB) given a price pB. Given

pB, a consumer is indifferent between purchasing from A and B iff

1− pA(x)− τx = 1− pB − τ(1− x) ⇐⇒ pA(x) = (1− 2x)τ + pB.

A will only set such a price if pA(x) ≥ rpB ⇐⇒ x ≤ x̃(r, pB) ≡ min{1
2 + (1−r)pB

2τ , 1}. Otherwise,

A is willing to give up the consumer to B. This gives us p̃∗A(x, pB, r) from (15). Also, observe that

A’s deviation must still guarantee that B’s profit is at least u. That is, it must be that

πB,N = (1− r)pB(1− x̃′(r, pB)) ≥ u ⇐⇒ x̃′(r, pB) ≤ 1− u

(1− r)pB

where x̃′(r, pB) represents the marginal consumer after A deviates. If x̃(r, pB) ≤ x̃′(r, pB), then

p̃∗A(x, p
∗
B) is A’s optimal deviating price schedule. If x̃(r, pB) > x̃′, then p̃′∗A(x, p

∗
B) is A’s optimal

deviating price schedule where

p̃′∗A(x, p
∗
B) =

(1− 2x)τ + pB if x ≤ x̃′

1− τx otherwise
.

Now, given A’s optimal deviating price schedule, B has a profitable deviation from p∗B to p∗B− ϵ

where ϵ is near 0 to earn (1− r)(p∗B − ϵ) profit. We can continue this process of price adjustments

until B adjusts its price to p
B

such that (1 − r)p
B

= u > 0. A has no incentive to deviate and

readjust its price schedule. By backwards induction, A sets the highest r such that p
B
= u

1−r ≤ 1−τ.

That is, the optimal fee R∗
N = 1− u

1−τ which implies p
B
= p∗B = 1− τ.

Proof of Lemma 4.

It is immediate that pcA,N (x) = 1 − τx as consumer surplus is fully extracted for x ≤ 1
2 . B sets

a uniform price pB = 1 − τ(1 − x̄) where x̄ is the marginal consumer that is indifferent between

pcA,N (x) and pB. The problem boils down to:

max
x̄

∫ x̄

0
(1− τx)dx+ (1− τ(1− x̄))(1− x̄)dx.

Solving gives that the optimal x̄ = 2
3 which gives us pcB,N = 1− τ

3 . Given that pcA,N (x) = 1− τx, it

is obvious that pdB,N = 1 − τ, as when τ < 1
2 , 1 − τ is the price B sets as a monopolist (see proof

of Lemma 3). For A’s deviating price, notice that A will keep its price of 1− τx for x < 2
3 . A can

undercut consumers x ≥ 2
3 and set the highest price such that they are indifferent between buying
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from A and B which is satisfied iff

1− pA(x)− τx = 1− (1− x)τ − pcB,N ⇐⇒ pA(x) = 1 +
2τ

3
− 2τx.

A is only incentivized to undercut B if

1 +
2τ

3
− 2τx ≥ rpcB,N ⇐⇒ x ≤ 1− r

2τ
+

2 + r

6
.

Thus, A is only incentivized to deviate if 1−r
2τ + 2+r

6 > 2
3 ⇐⇒ r < 3−2τ

3−τ .

Proof of Lemma 5.

Consider when D = N. Fee rdualN satisfies the (IRA) and (IRB) constraints iff

1− 6τ + 9u

3− τ
≤ rdualN ≤ 1− 9u

3− τ
.

To satisfy (CRB), it must be that

δ ≥ δ∗B,N =
πd
B,N (rdualN )− πc

B,N (rdualN )

πd
B,N (rdualN )− π∗

B,N (R∗
N )

=
(1− rcN )(23 − 8τ

9 )

(1− rcN )(1− τ)− u
⇐⇒ rdualN ≤ 1− δu

(1− τ)δ − 2
3 + 8τ

9

.

First, because δdualA,N is weakly decreasing in r (see proof of Proposition 2), A will set rdualN =

min{1 − 9u
3−τ , 1 − δu

(1−τ)δ− 2
3
+ 8τ

9

}. Next, it is easy to verify that rdualN = 1 − δu
(1−τ)δ− 2

3
+ 8τ

9

when

δ ≥ 6−8τ
9−9τ . When δ < 6−8τ

9−9τ , (CRB) cannot be satisfied, so it is without loss to keep rdualN as

1− δu
(1−τ)δ− 2

3
+ 8τ

9

as long as it is in [0,1]. For D = S, we just use the proof of Lemma 1 as collusive,

deviating, and competitive payoffs are the same for B as before in marketplace mode.

Proof of Proposition 2.

It is easy to verify that δdualA,N (r) is continuous and differentiable for r < 3−2τ
3−τ and equal to 0

otherwise. For all other j ∈ {A,B} and D ∈ {S,N}, δdualj,D (r) is continuous and differentiable for

r ∈ (0, 1). When δdualj,D (r) is continuous and differentiable, observe that (20) implies

dδdualj,k (r)

dr
=

πd′
j,k(r)− πc′

j,k(r)

πd
j,k(r)− π∗

j,k(R
∗
k)

−
πd
j,k(r)− πc

j,k(r)

(πd
j,k(r)− π∗

j,k(R
∗
k))

2
πd′
j,k(r) ≤ (≥) 0

⇐⇒ (1− δdualj,k (r))πd′
j,k(r)− πc′

j,k(r) ≤ (≥) 0.

It is easy to verify that
dδdualA,k (r)

dr ≤ 0 and
δdualB,k (r)

dr ≥ 0 given our parameter restrictions. When

r > 3−2τ
3−τ , δ∗A,N (r) = 0. Thus, δdualA,N (r) is weakly decreasing. Moreover, it can be easily shown that

δdualA,S (r) is strictly decreasing and δdualB,S (r) is strictly increasing for r ∈ (0, 1).
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Lemma A.1 The optimal ad valorem fee in the static Nash equilibrium under full data sharing

R∗
S < 1− 2u which implies

δdualA,S (r) < δ̃dualA,S (r) ≡
πd
A,S(r)− πc

A,S(r)

πd
A,S(r)−

τ
4 − (12 − u)

.

Similarly, δdual′A,S (r) < 0.

Proof of Lemma A.1.

Evaluating π∗
B,S(r) and

dπ∗
B,S(r)

dr at r = 1− 2u, we get

π∗
B,S(1− 2u) =

(2u+ (1− 2u)τ)2

4τ(1− u)
+

u(τ − 2u)

τ(1− u)
+ τ(1− 2u)

(uτ − 2u)

2τ(1− u)
− τ

4

=
4uτ − 4u2 + τ2 − 2uτ2

4τ(1− u)
− τ

4
< u

⇐⇒ 4uτ − 4u− τ2 < 0

which always holds. Because π∗
B,S(r) is weakly decreasing in r and weakly concave, A must set

R∗
S < 1− 2u to guarantee π∗

B,S(r) ≥ u. The rest of the results in the lemma are immediate. ■

Lemma A.2 The following two statements hold: (i) at r̃ such that δdualB,S (r̃) = δdualB,N (0), δdualA,S (r̃) <

δdualB,N (0) and (ii) min{δdualA,S (0), 1} > δdualB,S (0).

Proof of Lemma A.2. For the first item, δdualB,S (r̃) = δdualB,N (0) = 6−8τ
9(1−τ−u) when r̃ = rcS

∣∣
δ=δdualB,N (0)

.

That is,

r̃ = 1− δu

(1− τ
2 )δ +

3τ
8 − 1

2

∣∣∣∣∣
δ= 6−8τ

9(1−τ−u)

= 1− (6− 8τ)u
3
2 − 25

8 τ + 5
8τ

2 + (92 − 27
8 τ)u

> 1− τ.

When r = 1− τ,

δ̃dualA,S (r) = 1−
1
2 − τ + τ2

8 + u
1
2 − 3τ

4 + u
< δdualB,N (0) =

6− 8τ

9(1− τ − u)
= 1− 3− τ − 9u

9− 9τ − 9u

⇐⇒ (3− τ − 9u)(
1

2
+ u− 3τ

4
) < (9− 9τ − 9u)(

1

2
+ u− τ +

τ2

8
)

⇐⇒ u >
24− 86τ + 75τ2 − 9τ3

−48 + 46τ + 9τ2︸ ︷︷ ︸
<0 for 0<τ< 1

2

where δ̃dualA,S (r) is defined in Lemma A.1. By Lemma A.1, we have

δdualA,S (r̃) < δ̃dualA,S (r̃) ≤ δ̃dualA,S (1− τ) < δdualB,N (0) ⇒ δdualA,S (r̃) < δdualB,N (0).
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For the second statement,

δdualA,S (0) >
4− 3τ

8(1− 3τ
4 )

> δdualB,S (0) =
4− 3τ

8(1− τ
2 − u)

⇐⇒ u <
τ

4
.■

As δdualB,k (r) is weakly increasing in r, we know that the minimum δ such that collusion can

be possibly sustained under no data sharing is δdualB,N (0) = 6−8τ
9(1−τ−u) . Thus, by Lemma A.2, we

know that as we go from r = 0 to the r such that δdualB,S (r) = δdualB,N (0), the orders of the critical

discount factor for A and B flip under data sharing. Also, because δdualA,N (δdualB,N ) is strictly decreasing

(increasing) in r, the δ such that they intersect will be lower than δdualB,N (0).

Proof of Corollary 2.

Recall that collusion can only be possibly sustained if δ > 6−8τ
9(1−τ−u) > 6−8τ

9−9τ . Given our parameter

restrictions, we first show

36− 9τ

(1− τ
2 )δ +

3τ
8 − 1

2

<
24− 8τ

(1− τ)δ + 8τ
9 − 2

3

(A3)

⇐⇒ 36(1− τ)δ + 32τ − 24− 9τδ(1− τ)− 8τ2 + 6τ < 24δ(1− τ

2
) + 9τ − 12− 8δτ(1− τ

2
)− 3τ2 + 4τ

⇐⇒ 12 + 25δτ + 5τ2 − 5δτ2 − 12δ − 25τ > 0

⇐⇒ (1− δ)︸ ︷︷ ︸
>0

(12− 25τ + 5τ2)︸ ︷︷ ︸
>0

> 0.

Now, it is easy to directly show the two results.

πc
A,S(r

dual
S ) > πN

A,N (rdualN ) ⇐⇒ rdualS (
1

2
− τ

8
)− rdualN (

1

3
− τ

9
) >

1

6
− 7τ

72

⇐⇒ 12− τ + δu

[
24− 8τ

(1− τ)δ + 8τ
9 − 2

3

− 36− 9τ

(1− τ
2 )δ +

3τ
8 − 1

2

]
> 12− 7τ

⇐⇒ 6τ > δu

[
36− 9τ

(1− τ
2 )δ +

3τ
8 − 1

2

− 24− 8τ

(1− τ)δ + 8τ
9 − 2

3︸ ︷︷ ︸
<0 by (A3)

]
.

πc
B,S(r

dual
S ) < πN

B,N (rdualN ) ⇐⇒ (1− rdualS )(
1

2
− τ

8
) < (1− rdualN )(

1

3
− τ

9
)

⇐⇒ 12− τ − δu

[
36− 9τ

(1− τ
2 )δ +

3τ
8 − 1

2

− 24− 8τ

(1− τ)δ + 8τ
9 − 2

3

]
> 12− τ

⇐⇒ 36− 9τ

(1− τ
2 )δ +

3τ
8 − 1

2

− 24− 8τ

(1− τ)δ + 8τ
9 − 2

3

< 0.

Proof of Proposition 3.

Suppose A sets D such that joint seller profits are greater than under no data sharing. First, the

personalized prices set by B1 and B2 follow exactly from the full data sharing case for x ∈ D. Note
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that, as we know, profit under full data sharing is less than without data sharing, we assume A

must share data for a positive measure of consumers to see if it is superior to no data sharing. Let

a ̸∈ D denote the farthest consumer from B1 that purchases from B1 and b ̸∈ D denote the farthest

consumer from B2 that purchases from B2 in equilibrium. It must be that a ≤ b given consumers

only have unit demand. Therefore, we have two cases.

First, suppose a = b which implies the consumer at location a is indifferent between purchasing

from B1 and B2. This means that, in equilibrium, 1−p1−τa = 1−p2−τ(1−a) ⇒ a = 1
2 −

p1−p2
2τ .

B1’s maximization problem is

max
p1

{
p1

[1
2
− p1 − p2

2τ
− |D ∩ [0, a]|

]}
.

Solving gives us p∗1 =
τ+p2
2 − τ |D ∩ [0, a]|. Solving B2’s maximization problem similarly will give us

p∗2 =
τ+p1
2 − τ |D ∩ [a, 1]|. It is easy to verify that both p∗1 and p∗2 are less than τ if D ≠ ∅. Thus, it

cannot be that a = b and D ≠ ∅ such that sellers profit more than under no data sharing (implying

the platform also cannot earn more profit).

Now, suppose a < b. Observe that this implies that [a, b] ⊆ D. If there are consumers that are

facing a uniform price in [a, b] they are choosing not to purchase. So, the platform should share

data for those consumers to gain additional profit. Denote z1 = |D ∩ [0, a]| and z2 = |D ∩ [b, 1]|.
As such, the equilibrium uniform prices p∗1 and p∗2 must satisfy:

1

2
(p∗1 − 2(b− a)τ) = τ(a− z1) and

1

2
(p∗2 − 2(b− a)τ) = τ(1− b− z2).

The left hand side of each expression is the seller gains from deviating and undercutting from

equilibrium pricing and the right hand side is the internalized loss from undercutting. Solving gives

us p∗1 = 2τ(b− z1) and p∗2 = 2τ(1− a− z2). Given z1 and z2, the platform should share [0, z1] and

[z2, 1] as that gives the largest possible seller profit, so A’s maximization problem boils down to:

max
a,b

ap∗1 + (1− b)p∗2 +

∫
D
max{τ(1− 2x), τ(2x− 1)}dx ⇒ a∗ = b∗ =

1

2

which yields z∗1 = z∗2 = 0 and a∗ = b∗ = 1
2 which is a contradiction. Thus, it must be that D = ∅.

Proof of Proposition 4.

Observe that each seller’s critical discount factor can be rewritten as

δ∗D(r) = 1−
πc
D(r)− u

πd
D(r)− u

and is lower as πc
D(r) is closer in value to πd

D(r). Also, note that under full collusion, both sellers

will always win on their respective halves.
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Let our objective be to minimize B1’s discount factor to start. First, observe that it is optimal

for A to share data in the form of D = [a, b] where a ≤ 1
2 ≤ b. This results in B1 and B2 setting

collusive prices pc1 = 1− τa and pc2 = 1− τ(1− b), respectively.

To see this, suppose that A shared some data in the interval [0, a], say D1 with positive measure

z. To maximize collusion sustainability it is best to set D1 = [a−z, a] as losses would be maximized

because the new collusive uniform price would be greatest. Thus, our new shared data D′ = D∪D1

still holds the closed interval form. Now, suppose A instead removed some of the data they shared

say D̂ ⊆ [a, 12 ] from D. If B1’s collusive uniform price remains unchanged, then potential gains from

deviating may increase and if B1’s collusive uniform price decreases, then we can use the same

principle mentioned before and set the new D′′ = [0, a+ |D̂|] which would maximize losses. Thus,

the closed interval form will be preserved. Similar logic applies to seller B2.

A’s problem is to set a and b to minimize

∫ b

a
(1− τx)dx+max{(1− τa)a, (1− τ(2− b))(1− b+ a)}︸ ︷︷ ︸

πd
D(r)

−
[ ∫ 1

2

a
(1− τx)dx+ (1− τa)a

]
︸ ︷︷ ︸

πc
D(r)

=

∫ b

1
2

(1− τx)dx+max{0, (1− τ(2− b))(1− b+ a)− (1− τa)a}.

Solving gives us a = b = 1
2 which means A shares data on measure zero of consumers. This is

equivalent to setting D = ∅.

Proof of Proposition 5.

Using similar logic from before, each player’s critical discount factor is minimized when their col-

lusive payoff is closest to their deviating payoff. First, consider minimizing B’s critical discount

factor. First, we show that B’s deviating gains are minimized when D = [12 ,
2
3 ]. This is because

under collusion with no data, B wins over consumers from [23 , 1], so sharing any data on consumers

x ∈ [12 ,
2
3 ] will increase B’s collusive payoff (hence decreasing deviating payoff). And if A shares any

data on the interval [0, 12 ], B will set a higher deviating price 1− τ(1− x) which is weakly greater

than the uniform deviating price 1− τ. Note that it is possible to share data in [0, 12 ] such that B

does not deviate with its uniform price. However, this is only possible if A shares some [a, 12 ] such

that

(1− τ)(
1

3
+ a) ≤ 1

3
(1− τ

3
) ⇐⇒ a ≤ 2τ

9(1− τ)
.
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But, then B’s deviating net gains is higher compared to just setting D = [12 ,
2
3 ] as∫ 1

2

a
(1− τ(1− x))dx︸ ︷︷ ︸

deviating net gains when D = [a, 2
3
]

≥ 1

2
− 13τ

18
≥ 2

3
(1− τ)− 1

3
(1− τ

3
)︸ ︷︷ ︸

deviating net gains when D = [ 1
2
, 2
3
]

.

Also, note that under this construction, losses are maximized as B can capture at most 1
3 of

the market with its uniform price under collusion.

Now, consider A’s critical discount factor. If A shares data for consumers x ∈ [12 ,
2
3 ], then B will

win the market under collusion. This means that A has possibility of deviating and undercutting

these consumers, so to minimize deviating gains these consumers should not be included. It can

be easily shown that when xdN (r) > 2
3 , x

d(r) ≥ xdN (r) and pdA,S(x, r) ≥ pdA,N (x, r). This means that

when A is willing to deviate for a consumer x ∈ [23 , 1] under no data sharing, they are also willing

to deviate under data sharing with a higher price. Thus, to minimize deviating gains none of the

consumers’ data from [23 , 1] should be shared.

Proof of Proposition 6.

Suppose c < τ , the platform operatues in marketplace mode, and we are under full data sharing,

i.e. D = S. The collusive and deviating prices are just subtracted by c giving us the new collusive

and deviating profits for the sellers:

πc
S(r, c) = (1− r)(

1

2
− τ

8
− c

2
) and πd

S(r, c) = (1− r)(1− τ

2
− c).

The critical discount factor under full data sharing is then

δmkt
S (r, c) =

(1− r)(12 − 3τ
8 − c

2)

(1− r)(1− τ
2 − c)− u

.

Because this is increasing in r, the minimal bound for δmkt
S (r, c) is δmkt

S (0, c) =
1
2
− 3τ

8
− c

2
1− τ

2
−c−u . Also, note

that δmkt
S (0, c) is strictly decreasing in c as long as the denominator stays positive. Thus, using

(A1),there must exist some bound c̄ such that for c < c̄, δmkt
S (0, c) > δN .

Now, consider when A is in dual mode. Let UD denote the competitive payoff of the platform

in equilibrium. Note that UD < π∗
A,D(R

∗
D). Let δ

dual
j,D (r, c) be the critical discount factor for player

j given D, r, and c. These critical discount factors are characterized as

δdualA,S (r, c) =
πd
A,S(r, c)− πc

A,S(r) +
1+r
2 c

πd
A,S(r, c)− US

, δdualA,N (r, c) =
πd
A,N (r, c)− πc

A,N (r) + 2+r
3 c

πd
A,N (r, c)− UN

,

δdualB,S (r, c) =
πd
B,S(r)− πc

B,S(r)− 0.5(1− r)c

πd
B,S(r)− (1− r)c− u

, and δdualB,N (r, c) =
πd
B,N (r)− πc

B,N (r)− 2
3(1− r)c

πd
B,N (r)− (1− r)c− u
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using (11), (12), (13), (14), (16), (17), (18), (19), (24), (25). For future notational convenience, let

π̃d
A,S(r, c) =

∫ x̃d(r,c)

0
(1− τx)dx+ r

∫ 1

x̃d(r,c)
(1− τ(1− x))dx

such that πd
A,S(r, c) = π̃d

A,S(r, c)−c(1−x̃d(r, c))−rcx̃d(r, c). The proof follows closely to Proposition

2. First, we can say that

δdualA,S (r, c) =
π̃d
A,S(r, c)− πc

A,S(r)− c(1− r)(x̃d(r, c)− 1
2)

π̃d
A,S(r, c)− rcx̃d(r, c)− c(1− x̃d(r, c))− US

<
π̃d
A,S(r, c)− πc

A,S(r)

π̃d
A,S(r, c)− c− US

< δ̃dualA,S (r, c) ≡
π̃d
A,S(r, c)− πc

A,S(r)

π̃d
A,S(r, c)− c− τ

4 − 1
2 + u

.

The last inequality is implied by Lemma A.1 that R∗
S < 1− 2u and using the fact that US must be

lower than the competitive payoff without privacy cost.

At the r̃ such that δdualB,S (r̃, c) = δdualB,N (0, c), r̃ < 1− τ given sufficiently low c. This implies that

δdualA,S (r̃, c) < δ̃dualA,S (r̃, c) ≤ δ̃dualA,S (
1− τ − c

1− c
, c)

=
− τ

4 + τ
2(1−c) −

τ2

8(1−c)

1
2 − 3τ

4 + u− c

< δdualB,N (0, c) =
6− 8τ − 6c

9(1− τ − u− c)
.

Also, δdualA,S (0, c) > 4−3τ
8(1− 3τ

4
)
> δdualB,S (0, c) = 4−3τ−4c

8(1− τ
2
−u−c) where the last inequality holds for sufficiently

low c > 0. The proofs follow almost identically to the proofs for Lemmas A.1 and A.2. Thus, we

can use the same argument in Proposition 2 yielding the same result.

Proof of Proposition 7

If sellers enforce the harshest punishment, then the non-integrated seller’s critical discount factor

do not change. However, if the platform deviates, then B will punish A by setting price to 0 and

leaving A with τ
4 profits regardless of D. Thus, A’s new critical discount factors are

δhpA,D(r) =
πd
A,D(r)− πc

A,D(r)

πd
A,D(r)−

τ
4

< δdualA,D (r).

35



Note that δhpA,D is still strictly decreasing in r. By Lemma ??, we have

δhpA,D(r) < δ̃dualA,S (r) ≡
πd
A,S(r)− πc

A,S(r)

πd
A,S(r)−

τ
4 − (12 − u)

.

By the first statement of Lemma A.2, at r̃ such that δdualB,S (r̃) = δdualB,N (0),

δhpA,S(r̃) < δdualA,S (r̃) < δdualB,N (0).

Also, we know that δhpA,S(0) =
4−3τ

8(1− 3τ
4
)
> δdualB,S (0) from the proof of the second statement in Lemma

A.2. Thus, we can invoke the same argument in the proof of Proposition 2 to conclude that collusion

is less sustainable with no data sharing under dual mode.

B Microfoundation for Assumption in the Stage Game.

We provide a brief stylized microfoundation for the assumption that the platform prefers to keep

sellers rather than driving them out of the market. Suppose that there are two competing platforms,

A1 and A2, that sellers can join and now there is a measure two of consumers. Before making their

purchasing decision, consumers now must choose which platform to join. That is, we are assuming

that sellers can multi-home and consumers are single-homing. Like the stage game, consumers

have inelastic demand for one unit of the good and are differentiated in preference by seller. Now,

consumers are also uniformly differentiated in preference for platform (i.e. lA1 = 0 and lB2 = 2).

Specifically, consumer preferences are distributed independently and uniformly on [0, 1] × [0, 2].

Crucially, consumers are “naive” in the sense that they make their homing decision without taking

into account its effect on how sellers price on each platform. Thus, a consumer with platform

preference y ∈ [0, 2] is indifferent between joining A1 and A2 iff

−τAy + βnA1 = −τA(2− y) + βnA2 (B1)

where β > 0 represents the indirect network externality for consumers, τA is the transportation

cost for choosing a platform, and ni is the number of sellers on platform i ∈ {A1, A2}.10 By (B1),

the market size of platform A1 and A2 is 1− β(nA2
−nA1

)

2τA
and 1+

β(nA2
−nA1

)

2τA
, respectively. We keep

all remaining assumptions on parameters which will be sufficient to guarantee players compete on

the margin for their competitor’s consumers. The timing of the stage game is now: (i) Platforms

set their fees and data sharing policy; (ii) Sellers decide which platform(s) to join; (iii) Consumers

decide which platform to join; (iv) Sellers set their respective prices; (v) Consumers observe prices

and make their purchasing decision.

10We omit the value of the buyer’s homing decision. As long as we keep the valuation uniform between
both platforms, the condition will still be valid.
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First, it is immediately obvious that under collusion, it is beneficial for the platform to keep

both sellers. But will the platform prefer to host both sellers under competition? Suppose the

platforms operate in marketplace mode and both platforms set their ad-valorem fee low enough

such that both sellers join. Now, consider the case if A1 deviates by setting a higher ad-valorem

fee r1 such that only one seller would join. Then the seller would earn

ΠD =

(1− r1)(1− β
2τA

)(1− τB/2) if D = S

(1− r1)(1− β
2τA

)(1− τB) if D = N

where τB denotes the transportation cost for purchasing from sellers. It would then be optimal for

A1 to set the highest r1 such that ΠD = u. That is,

r1 =


1− u

(1− β
2τA

)(1−τB/2)
if D = S

1− u

(1− β
2τA

)(1−τB)
if D = N

.

This leaves A1 with the following competitive profit yield

π∗
A1

=

(1− β
2τA

)(1− τB/2)− u if D = S

(1− β
2τA

)(1− τB)− u if D = N
.

Comparing this with how much the platform makes in equilibrium for Sections 4.1 and 4.2 gives us

the following condition for this deviation to not be profitable:

β >


2τA(1−τB+u)

1−τB/2 if D = S

2τA(1−2τB+u)
1−τB

if D = N
.

Therefore, if β is sufficiently high, or if the indirect network effect from sellers are strong enough,

then the platform will opt to keep both sellers on the platform in equilibrium. Intuitively, this

means that the platform values the seller’s presence on the marketplace because consumers base

their decisions on the number of sellers, e.g. product variety.
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